중앙대학교 인문콘텐츠연구소

HK+인공지능인문학

학술활동연구논문

연구논문

학술활동연구논문

연구논문

제목CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG2024-04-13 17:22
작성자 Level 10
2023 Apr 12:19:851-863.
 doi: 10.2147/NDT.S404528. eCollection 2023.

CNN for a Regression Machine Learning Algorithm for Predicting Cognitive Impairment Using qEEG

Affiliations 

Erratum in

Abstract

Purpose: Electroencephalogram (EEG) signals give detailed information on the electrical brain activities occurring in the cerebral cortex. They are used to study brain-related disorders such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). Brain signals obtained using an EEG machine can be a neurophysiological biomarker for early diagnosis of dementia through quantitative EEG (qEEG) analysis. This paper proposes a machine learning methodology to detect MCI and AD from qEEG time-frequency (TF) images of the subjects in an eyes-closed resting state (ECR).

Participants and methods: The dataset consisted of 16,910 TF images from 890 subjects: 269 healthy controls (HC), 356 MCI, and 265 AD. First, EEG signals were transformed into TF images using a Fast Fourier Transform (FFT) containing different event-rated changes of frequency sub-bands preprocessed from the EEGlab toolbox in the MATLAB R2021a environment software. The preprocessed TF images were applied in a convolutional neural network (CNN) with adjusted parameters. For classification, the computed image features were concatenated with age data and went through the feed-forward neural network (FNN).

Results: The trained models', HC vs MCI, HC vs AD, and HC vs CASE (MCI + AD), performance metrics were evaluated based on the test dataset of the subjects. The accuracy, sensitivity, and specificity were evaluated: HC vs MCI was 83%, 93%, and 73%, HC vs AD was 81%, 80%, and 83%, and HC vs CASE (MCI + AD) was 88%, 80%, and 90%, respectively.

Conclusion: The proposed models trained with TF images and age can be used to assist clinicians as a biomarker in detecting cognitively impaired subjects at an early stage in clinical sectors.

Keywords: electroencephalography; neurodegenerative diseases; regression analysis; supervised machine learning.

중앙대학교 인문콘텐츠연구소
06974 서울특별시 동작구 흑석로 84 중앙대학교 310관 828호  TEL 02-881-7354  FAX 02-813-7353  E-mail : aihumanities@cau.ac.krCOPYRIGHT(C) 2017-2023 CAU HUMANITIES RESEARCH INSTITUTE ALL RIGHTS RESERVED