한국 대중 서사 기반 감정 데이터 구축과 활용 - 감정 딥러닝 모델 구현을 통한 문학 연구의 활용 가능성 탐색을 중심으로Construction and utilization of emotion data based on Korean popular narratives Exploring the Use of Emotional Deep Learning Models in Literary Research -
본 연구는 한국 대중 서사 기반의 감정 데이터를 활용하여 한국 문학의 감정을 연구할 가능성을 모색해보고자 하였다. 이에 중앙대학교 인문콘텐츠연구소에서 구축한 문학과 콘텐츠 감정 데이터를 소개하고, 이를 활용하여 ‘문학’, ‘콘텐츠’, ‘문학+콘텐츠’의 데이터별 LSTM 및 BERT 2분류(긍정·부정) 모델 총 6개, LSTM 3분류(분노·슬픔·즐거움) 모델 1개를 구축하였다.
LSTM 및 BERT 2분류 모델은 80~87%의 감정 예측 정확도를 보여주었고, 긍정보다는 부정을 더욱 정확하게 예측하였다. 학습 방법별로 LSTM보다 BERT가 예측 정확도가 높았다. 감정 데이터별로는 ‘문학+콘텐츠’ 모델이 예측 정확도가 높았다. 이러한 결과는 정보공학의 측면에서 학습한 데이터 총량의 문제와 연관되는 것으로 파악되지만, 인문학적으로 볼 때 토대 데이터의 성격 즉 소설과 드라마의 성격 차이에 따른 감정 양상의 차이에서 비롯되는 것으로 파악된다. 이후 <구운몽>을 대상으로 한 ‘감정 딥러닝 모델의 감정 판단 데이터’와 ‘주석자 감정 판단 데이터’의 비교 검증을 진행하였는데, 감정 수치가 높은 긍정, 부정 범주의 판단 사례가 대체로 일치하는 결과를 보여주었다. 즉 감정 딥러닝 모델이 문학 연구에 활용될 가능성을 보여준 것이다. |