중앙대학교 인문콘텐츠연구소

HK+인공지능인문학

학술활동연구논문

연구논문

학술활동연구논문

연구논문

제목Use of the Clock Drawing Test and the Rey-Osterrieth Complex Figure Test-copy with convolutional neural networks to predict cognitive impairment2021-05-28 14:25
작성자 Level 10

  • DOI: 10.1186/s13195-021-00821-8
    • Use of the Clock Drawing Test and the Rey-Osterrieth Complex Figure Test-copy with convolutional neural networks to predict cognitive impairment
    • Affiliations


    • Background: The Clock Drawing Test (CDT) and Rey-Osterrieth Complex Figure Test (RCFT) are widely used as a part of neuropsychological test batteries to assess cognitive function. Our objective was to confirm the prediction accuracies of the RCFT-copy and CDT for cognitive impairment (CI) using convolutional neural network algorithms as a screening tool.

      Methods: The CDT and RCFT-copy data were obtained from patients aged 60-80 years who had more than 6 years of education. In total, 747 CDT and 980 RCFT-copy figures were utilized. Convolutional neural network algorithms using TensorFlow (ver. 2.3.0) on the Colab cloud platform ( www.colab.

      Research: google.com ) were used for preprocessing and modeling. We measured the prediction accuracy of each drawing test 10 times using this dataset with the following classes: normal cognition (NC) vs. mildly impaired cognition (MI), NC vs. severely impaired cognition (SI), and NC vs. CI (MI + SI).

      Results: The accuracy of the CDT was better for differentiating MI (CDT, 78.04 ± 2.75; RCFT-copy, not being trained) and SI from NC (CDT, 91.45 ± 0.83; RCFT-copy, 90.27 ± 1.52); however, the RCFT-copy was better at predicting CI (CDT, 77.37 ± 1.77; RCFT, 83.52 ± 1.41). The accuracy for a 3-way classification (NC vs. MI vs. SI) was approximately 71% for both tests; no significant difference was found between them.

      Conclusions: The two drawing tests showed good performance for predicting severe impairment of cognition; however, a drawing test alone is not enough to predict overall CI. There are some limitations to our study: the sample size was small, all the participants did not perform both the CDT and RCFT-copy, and only the copy condition of the RCFT was used. Algorithms involving memory performance and longitudinal changes are worth future exploration. These results may contribute to improved home-based healthcare delivery.

      Keywords: Clock Drawing Test; Cognitive impairment; Convolutional neural network; Machine learning; Rey–Osterrieth Complex Figure Test; TensorFlow.

중앙대학교 인문콘텐츠연구소
06974 서울특별시 동작구 흑석로 84 중앙대학교 310관 828호  TEL 02-881-7354  FAX 02-813-7353  E-mail : aihumanities@cau.ac.krCOPYRIGHT(C) 2017-2023 CAU HUMANITIES RESEARCH INSTITUTE ALL RIGHTS RESERVED